
The behaviour of a laminar compressible boundary 
layer near a point of zero skin-friction 

By K. STEWARTSON 
Department of Mathematics, The Durham Colleges in the University of Durham 

(Received 22 April 1961) 

It is shown, with a high degree of certainty, that a general compressible laminar 
boundary layer can develop a singularity at a point of zero skin-friction only if 
the heat transfer at that point is zero. 

1. Introduction 
The irregular behaviour of an incompressible boundary layer near a point of 

zero skin-friction was first noticed by Howarth (1938) in a numerical computa- 
tion. Subsequently the behaviour of the flow in this neighbourhood was in- 
vestigated by Goldstein (1948) and Stewartson (1958); their work was improved 
and extended to include the effect of suction by Terrill (1960) who also gave an 
admirable account of the present position. These authors showed that a formal 
expansion of the stream function about the point of zero skin-friction can include 
non-integral powers of x, the distance upstream from this point, and eventually 
powers of logs whose coefficients are complicated functions of y/xk, where y 
measures distance normal to the wall. Further numerical calculations, by 
Hartree (1939) and Leigh (1955) have confirmed and extended Howarth’s 
results and it has been possible to join them up with the expansions about the 
point of zero skin-friction. Thus the existence of the singularity can be regarded 
as fully established and understood a t  the present time. 

This property of the incompressible boundary-layer equations is reflected in 
the Falkner-Skan equations, a family of ordinary differential equations derived 
from them and characterized by a parameter p (Hartree 1937). When subject 
to appropriate boundary conditions, solutions of these equations only exist if 
~3 2 - 0.199, and the skin-friction vanishes at the minimum p where, regarded 
as a function of 8, it has an algebraic singularity. 

The compressible boundary layer is of course much more complicated. How- 
ever, if we assume that the Prandtl number is unity, that the viscosity ,u is 
proportional to the temperature and that there is no heat. transfer to or from the 
wall, t he  governing equations can be reduced to the incompressible form. 
Accordingly, in these circumstances the compressible boundary layer also 
develops a singularity at a point of zero skin-friction. Recently, however, two 
numerical integrations have been carried out with one of these restrictions, that 
of zero heat transfer from the wall, relaxed. Poots (1960) has considered the case 
of a constant wall temperature greater than its stagnation temperature so that 
there is heat transfer into the fluid. His solution showed no signs of irregularity 
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near the point where the skin-friction vanishes. Curle (1958) has reported several 
cases in one of which the wall temperature was constant and less than the 
stagnation temperature. Great difficulties occurred in completing this solution 
right down to the point of zero skin-friction and it is possible, although not a 
certainty, that these arose because in fact the flow became singular before the 
skin-friction vanished. 

Again, if the condition of zero heat transfer is relaxed to permit a constant wall 
temperature, then the compressible boundary-layer equations can be reduced 
to a form similar to that of the Falkner-Skan equation, although to be sure there 
is an additional equation for the temperature in the layer. The pair of equations 
have been integrated numerically in a variety of cases by Cohen & Reshotko 
(1956). From their work it appears that, if the temperature and velocity are 
subject to the appropriate boundary conditions, solutions can only be obtained 
if p is greater than a certain minimum value Po which is a function of the wall 
temperature. At p = Po, the skin-friction is not zero unless the heat transfer 
from the wall is zero too, being positive if heat is transferred from the fluid to 
the wall and negative otherwise. 

As a result of these findings it is of interest to look at the behaviour of a com- 
pressible boundary layer near a point of zero skin-friction to see whether it 
develops a singularity there. We shall find that for a general compressible fluid 
the boundary layer cannot have a singularity at the point of zero skin-friction. 
The chief and probably the only exception is if the heat transfer from the wall 
is zero there. No other exception could be found but the arguments, although 
strongly suggesting that there is only one, are not conclusive. The main assump- 
tions of the paper are that the singularity, if i t  exists, is of the same character 
as that assumed by Goldstein (1948) and that the tangential stress in the fluid 
first vanishes at the wall. The argument is developed first for a model fluid in 
which the Prandtl number (r = 1 and the viscosity is proportional to the absolute 
temperature. It is then shown that the differences between this fluid and a real 
fluid are marginal, affecting the details of the solution but not its essential 
character. 

The importance of these results is twofold. First it shows that computers of 
boundary layers must no longer expect the end point of their calculations to be 
where the skin-friction vanishes. It may occur earlier. Secondly, it indicates that 
experimenters may no longer be justified in regarding separationt as the point 
where the skin-friction vanishes. From a mathematical stand-point, at infinite 
Reynolds number the main stream leaves the wall when the boundary layer, 

t Separation is used in the literature on boundary layers to refer to one or more of three 
phenomena, viz. (i) the point of the wall a t  which the tangential component of the stress 
in the boundary layer vanishes, i.e. the skin-friction is zero; (ii) the place at which the 
solution of the boundary-layer equations develop a singularity, so that the equations break 
down and cannot be continued further downstream; (iii) the place at  which the main 
inviscid stream detaches itself from the wall. In an incompressible fluid no confusion arises 
because theory and experiment together indicate that these three points are identical, or 
very nearly so. However, the conclusions of this paper strongly suggest that these three 
points are not identical for a general compressible boundary layer. Accordingly, the use of 
the word separation is restricted here to its natural seme and refers only to the place at  
which the main stream detaches itself from the wall. 
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joining it to the wall, breaks down. If breakdown occurs before the skin-friction 
vanishes, which can no longer be ruled out, the main stream leaves the wall 
while the skin-friction is still positive. In  this case an experiment, carried out 
a t  a finite but large value of the Reynolds number, would show a rapid thickening 
of the layer in a region of positive skin-friction. It has not been possible, however, 
to show that the boundary layer breaks down somewhere. Thus an analysis 
based on Goldstein's method (1930) indicated that a singularity with centre 
on the wall could not occur at a point of positive skin-friction. Presumably 
breakdown does occur, from the evidence available, and it is inferred that the 
centre of the singularity is no longer at the wall, being instead at an interior point 
of the boundary layer. 

2. The model equations 
To begin with we shall suppose that the fluid has a Prandtl number CT = 1 

and viscosity proportional to the absolute temperature while the main stream 
outside the boundary layer is irrotational and homenergic. The equations 
governing the flow in the boundary layer may then be reduced to the form 
(Stewartson 1949) 

in which $is the stream function, S is simply related to the absolute temperature, 
X and Y correspond to distances measured along and perpendicular to the wall 
respectively, V is proportional to the Mach number of the main stream just 
outside the boundary layer and v, is the kinematic viscosity at some standard 
place. The appropriate boundary conditions are that 

a$/aY+ V ( X ) ,  S+O as Y+co, (2.3) 

$ = a$/ar = o rtt Y = 0, (2 .4)  
S and $ are prescribed at some initial station of X and either 

or 
S = t ( X )  at Y = 0, 

3 8 p Y  = 0 at Y = 0, 

where t ( X )  is a prescribed function of X, derived from a prescribed temperature 
distribution at the wall. 

Without loss of generality we may suppose that the skin-friction vanishes at 
X = Y = 0,  i.e. that 

(2.7) -- "' - 0 when X = Y = 0, a Y' 

and denote by the suffix 0 the value of a function at the origin. Then following 
Goldstein ( 1  948) we introduce non-dimensional variables 
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Further we assume that, near X = 0, 

and, in the case when S is prescribed at  the wall, 

g(6,O) = < 4 4 + & 3 2 +  ..., (2.10) 

where the P's and 8 's  are all known. Substituting (2.8) and (2.9) into (2.1) 
and (2.2)) we find that f and g satisfy 

and (2.12) 

Following the argument for incompressible flow, which is a special case of the 
present one, and in which g = 0, we assume to begin with that f and g can be 
expanded in a series of integral powers of <, whose coefficients are functions of 7. 
As in that case it will be found necessary in certain circumstances to modify 
the series by adding extra terms in which powers of (log <) occur as multiplicative 
factors. In  incompressible flow, once we accept the choice of variables in (2.8), 
i t  can be shown that there is no alternative to the form of the final expansion, 
but there are other possibilities different from (2.8) for the basic variables in the 
expansion. However, it  can be shown that if the variables y/xl 'n, n += 4 
are chosen, the pressure gradient is not a controlling feature of the flow near the 
point of zero skin-friction, and further, the solution is either self-contradictory 
or the stress vanishes in the interior of the fluid before it vanishes at the wall. 
It may be that the singularity is controlled by such variables in the present 
problem, but it does not seem likely because the effect on heat transfer only 
manifests itself through the pressure gradient, and further, there is no evidence 
from numerical calculations that the stress vanishes in the interior of the fluid 
before it vanishes at the wall. Another possibility is that the singularity may be 
of a different kind from that envisaged here and in fact of an entirely novel kind. 
The evidence from the numerical calculations is perhaps relevant here; while 
the work reported by Curle was equivocal, that of Poots was clear, and since it 
is in agreement with the general conclusions of this paper there seems little point 
in searching further. 

Accordingly we write 

W 

f ( < , ~ )  = 2 f,(r)  fn+extra terms involving powers of (log<), (2.13) 
n=Q 

.-. 
g ( < , r )  = 2 gn(T) 5" +extra terms involving powers of (log 6). (2.14) 

It is convenient to include these terms in the f,,, gn so that if at any stage it is 
necessary to include log < it  will be done by assuming that f,, gn are polynomials 
in log$. 

n=O 
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The boundary conditions are that 

fn(0) = f = 0, 
that either 

(2.15) 

g4r(0) = 8, for r = 1,2,  ... and g,(O) = 0 otherwise, (2.16) 

for a prescribed wall temperature, or 

go(0) = 0, gA(0) = 0 for n 2 1, (2.17) 

if the heat transfer at the wall is zero. Further f,, gn are not exponentially large 
a t  infinity, which follows from the assumption that the singularity, if it exists, 
is centred at the origin. 

If we substitute (2.13) and (2.14) into (2.11) and (2.12), we find that fo, go 
satisfy 

(2.18) 

If, from these equations, fo is ultimately negative i t  means that fi must tend 
to a negative limit or to zero from below. In  either case the stress must vanish 
in the fluid before it vanishes at the wall, which is excluded. However, if fo is 
ultimately positive and gh(0) =I= 0, gh --f co exponentially which is also excluded. 
Accordingly, we must have go E 0, whence 

The equations for f,, g, are 

f6” - 3f0 f; + 2fL2 = 1 +go, 9,” - 3f0 g; = 0. 

f o  = +T3. (2.19) 

(2.20) 

The homogeneous equation for fi and indeed the corresponding homogeneous 
equations for f, have been extensively discussed by Goldstein (1948) and Terrill 
(1960). The general homogeneous equation for g, is new and is discussed in 
Appendix A to this paper. It follows from this appendix that the only acceptable 
solution of the equation for g, is 

where B, is an arbitrary constant at present, unless the heat transfer vanishes 
at the wall when it is zero. For the moment we shall assume it does not vanish. 
With the solution (2.21) for g,, the solution of (2.20) becomes 

f; - B’?]”f;’ + %Y2ff; - 4rlfi = 91, 9; - BY39; + i’?fgl = 0. 

91 = BlT, (2.21) 

(2.22) 

where a, is an arbitrary constant of the equation for f, equal to tfl(0). Similarly, 
the equation for g, is 

g;-13 z~ g 2 + r 2 g 2  ’ = 4f19;-f;91 = 2 a , B , ~ ~ ,  (2.23) 

of which the solution is 9 2  = 2a,B,(1-G2), (2.24) 

where G2(7) is the complementary function of (2.23) which is algebraic a t  infinity 
and such that G,(O) = 1. Equation (2.24) is the appropriate solution for a pre- 
scribed temperature at  the wall. If the heat transfer from the wall is zero, B, = 0 
and the appropriate solution is g2 = 0. The equation for f2 is 

&” - &ffl+ - 57f2 = - 4 a : ~ ~  + .SalB1y4 +g2(y). (2.25) 
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The complementary functions of (2.25) are r2, 7 +q5/30 and a function which is 
exponentially large at infinity. Hence (2.25) has a solution with a double zero 
a t  the origin and algebraic a t  infinity if and only if 

JoW (72-5) {g2(7)+3a1~17'-4a~72}e-~*~7 = 0, (2.26) 

i.e. if a,B,fom (q2--$) G2(7)e-*q'd7 = 0. (2.27) 

From the integral for C, given in Appendix A it follows that the left-hand side 
of (2.27) is equal to 2 2 d (  - a!)3a,Bl/5, and so either a, = 0 or B, = 0. 

When a similar difficulty occurred in the incompressible theory, it was not 
necessary to infer that the coefficient of the integral must vanish, for by adding 
a suitable term with a factor log the difficulty was overcome. The reaBon is that 
i t  was possible to choose the stage (n = 5) at which the new term was added, so 
that no additional integral condition need be satisfied. In the present instance, 
however, this is not possible. The only suitable place might be as a modification 
tof,, but since the equations for fa depend onf;, essentially there must be a term 
with a factor (log t)2 added tof,. Although no integral condition is needed to make 
this term acceptable, there are integral conditions associated with the term having 
a factor log 6 and the term independent of log (. Accordingly, the arbitrary con- 
stant in the modification to fi must satisfy two conditions and is either zero or 
over-specified. 

3. Non-zero heat transfer at the origin 

end of the last section, are reduced to simply 

if the heat transfer does not vanish at the origin where the skin-friction vanishes. 
I n  this section we show that if B -+ 0 the solution must be completely regular near 
the origin. The method is to show that at each stage of the expansim only regular 
terms are introduced into the solution. We have from the last section 

The two alternatives presented by the condition a,B, = 0, obtained a t  the 

a1 = 0 (3.1) 

fi = &Bi7', 91 = B17, f2  a27', 92 = O, (3.2) 
where, on substituting into (2.13) and (2.14), all terms except!, contribute only 
positive integral powers of X, Y to @. It is now shown that a2 = 0. For the 
equation for g3 is 

gg - 97"; -k $q2g3 = 5f2 9; - f; 91 = 3a2B172, (3.3) 
with solution 93 = %B,(1- G k J U .  (3.4) 

fjn-g73f3Nfz 27fl-67f3 2 = ~a2B1r4+2a2B1(1-G3(7)). (3.5) 

Substitution into (2.11) yields, as the equation for f 3 ,  

Since the forcing term of (3.5) is arbitrary to the extent of a multiplicative factor 
only, we can expect f 3  to be algebraic at infinity and to have a double zero at the 
origin, if and only if a2 = 0. In  fact this has been verified numerically, using the 
method described in Appendix B. Hence 

9 3  = 0, f 3  = a37 2 9 (3.6) 
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where a3 is arbitrary. The new term, when expressed in terms of X and Y ,  is 
regular at the origin contributing nothing to S and a term of order X Y 2  to +. 

The equation for 9, is 
94" - 4r3g4 + 27'9, = 4a3Blr2, 

94  = 4% B174 + xl(l - $7')~ 

(3.7) 

(3.8) 

the boundary condition at the wall being now g4(0) = Sly so that the solution 
required is 

which again corresponds to a regular solution at the origin. Now the purpose of 
this section is to show that if B, 4 0 the solution must be regular at the origin. 
In  order to keep the argument as simple as possible we shall set S, = 0, although 
there is no formal difficulty in the more general problem. The equation for f4 is 
then ' f! - 4r3f; + 47": - 77f4 = g4 + Pl + 6f:f, + 4f{f1 - 8fi fj 

with solution f4 = a47' + QJ?1(73 - &PI') + dida3Bl. (3.10) 

Of these terms, only a4r2 corresponds to a singular solution at the origin. The 
equation for g5 is 

= a3B1r4, (3.9) 

g ; - h 3 d + $ r 2 g 5  = 7f49;-f~g1+4fl9~-4fIg4 
= 5C%4B,?j2 + %p1B1?j3. (3.11) 

Since the complementary function of (3.11), algebra,ic at infinity, is given by 
7 -+376 which vanishes at the origin, the appropriate solution of (3.11) is found 
by introducing a factor log< into g5. We write 

9 5  = 5a4Bi[C5(7-~~76)log<+ih's(r)I +&81B1?'~ (3.12) 

the equation satisfied by h, being 

h:-g73h;++ph5 = 7z-4c573(1 -674).  (3.13) 

In  the usual way it can be shown that h, vanishes at  the origin and is algebraic 
a t  infinity only if 

~ ~ m e - t ~ 4 ? s ( l - ~ ) ( 1 - ~ C 5 ~ 1 - ~ ) ) d 7 /  = 0, i.e. if 2-4(4)!C5 = 1. (3.14) 

From the form of g5(7) given in (3.12) it follows that f5(7) must include a factor 
proportional to log 6 and so we write 

fS(7) = p6(7)10g6+q5(7)2 (3.15) 

p5  and q6 having double zeros at the origin and being algebraic a t  infinity. The 
equation for p ,  is 

~ ~ - ~ 7 3 p , " + ~ 7 ' p ~ - 8 ~ p ,  = 5a4B1c5(7-&75), (3.16) 

with solution (3.17) 

where P5 is arbitrary. The equation for q5(7) is 
P5 = P 5 V 2  + &4B, CfJr4 - &SS)2 

& - -37'q'; + $7'4; - 87Qs = (7p5 - $'?12pL) + 5a4Blh5 + &P1B,q6 +pig, 

+ 7f34 + ?fX - 9 f X  
= PIBl(q + &q6) + 5a4 B1(h5 - +q4 - &v6c5 + &;roc6). 

(3.18) 

The term containing PIRl only contributes a polynomial of degree eight to qa, 
so that the terms which are exponentially large at infinity can only arise from the 
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second forcing term of (3.18). This term is fully determinate apart from the 
multiplicative constant and accordingly we can expect the contribution it makes 
to q5 to be exponentially large at infinity, except when a, = 0. This has been 
verified by actual integration after expressing h, as an infinite series and expres- 
sing the condition that q5 be not exponentially large at infinity in a similar 
integral form to (3.26). 

With a, = 0 all the terms of the expansion which have been worked out so 
far are, when expressed in terms of X ,  Y ,  regular a t  separation, apart from P5q2. 
This terms occurs in the expression forp,(r) andnow that a, = 0 thereisno obvious 
reason why it should be retained. If nevertheless it is left in and the corre- 
sponding equation for p6 examined, it follows that P5 = 0 in a similar way to 

It is generally true in fact that if the expansion off as far as Cn-lfn-, is regular 
when expressed in terms of X ,  Y the contribution from f n  will also be regular 
apart from a term a,v2 (n + 4r + 3). The equation forf,,, then leads to a solution 
which is exponentially large at infinity unless the product of an B, and a certain 
fully determinate integral vanishes. In  the three typical cases considered above, 
this integral has been shown to be non-zero. Since there is no apriori reason why 
the integral should vanish from the properties of the functions involved, one 
might reasonably assume that it does not, although a numerical integration or 
summation would be needed in any specific case. Hence we conclude that, if 
B, =/= 0, the solution must be regular at separation. 

If n = 4r + 3, however, fn+ ,  is not exponential at infinity even if an + 0 and 
indeed the contribution to @ from f n  is regular in terms of X ,  Y .  Accordingly, 
the expansion of $ contains an infinite number of arbitrary constants a4r+3 
even though it is regular at the origin. Further B47+1, being the coefficients of 
those polynomial solutions of gn = 0 which vanish at  7 = 0, are also arbitrary 
and also make only regular contributions to $, S. 

We conclude that, if the heat transfer at  the point of vanishing skin-friction 
is non-zero in this model boundary layer, then the solution is regular at this 
point. Further if $, S are expanded in a double power series in X ,  Y ,  none of the 
terms in (iY~/i3Y2)p,0, (i3S/aY),,,, i.e. in the expansion of the skin friction and 
the heat transfer, are determined solely by local conditions; they depend in 
some way on the prescribed behaviour of 4, S at  the initial station of X .  

a, = 0. 

4. Zero heat transfer at the point where the skin-friction vanishes 
In  this section we consider the alternative condition for there to be a solution 

of the boundary-layer equations near the origin of the form assumed, namely 
that the heat transfer should be zero a t  the origin though it need not vanish 
anywhere else. We shall show that the solution is singular just as in the incom- 
pressible case. For, if I?, = 0 from (2.24), g2 = 0 and continuing the argument 
g, = 0 too, while f,, f 2 ,  f3 are exactly as given by Goldstein (1948). This is true 
whether S is prescribed at the wall or the heat transfer is zero. They could only 
be non-zero if the prescribed wall temperature were not regular at  separation, 
which is excluded. The equation for g,  is now 

g: - *739; + 272g4 = 0 
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and g4(0) = S, so that, from Appendix A, 

The equation for g5(7)  is 
94(7) = f4(1 -+I4). (4.1) 

(4.2) 

g5(7) = -%-1%7~fB,(rl-i%~)- (4.3) 

95" - 4 7'9; + $v2g5 = - 8a1 S, 7( 1 + i74) 
and g5(0) = 0. The appropriate solution is 

Notice that one might have expected the solution of (4.3) to lead to difficulties 
since all complementary functions which do not vanish at the origin are ex- 
ponentially large at infinity. Hence, if the pa,rticular integral were exponentially 
large at infinity, it  could not be cancelled by a Complementary function without 
making g,(O) + 0. It appears that the particular integral is a polynomial so that 
the difficulty does not arise. It must not be thought that the simplicity of (4.3) 
is fortunate and essential to the argument; indeed if more general boundary 
layers are considered, in which for example, the Prandtl number is not unity, 
the simplicity is lost. However, in that case it is only necessary to add to g5(7) 
an extra term 

(4.4) 
where D, is a constant chosen to cancel this exponential term as outlined in 0 3 
above and in Stewartson (1958). Further, such a term would alter the equation 
for f5(7) but again could be dealt with by adding to f4(q) a function of 7 multiplied 
by at worst log[; such a term would not affect g5(7).  Accordingly, there is no 
need to check from the equations for g41.+1(7), r integral, that the particular 
integral is algebraic a t  infinity: it does not matter. 

From now on the procedure is iterative. The equation for 9 6 ,  

(4.5) 1 3 '  9: - 27 96  + 372gL = 4flgi - sf; 95 f 5.f2 9; - 4fi 94, 

determines g6(q). The corresponding equation for f6(y) presents no additional 
difficulties to the incompressible problem (Stewartson 1958). Again it is neces- 
sary to modify f5(7) by adding a term P,rflog 5 to it, to modify f6 in consequence, 
and it is then possible to determine p, in terms of B, while a, remains arbitrary. 
Continuing the argument, it  follows that if B, = 0 a solution which is singular 
at the origin can be found containing two infinite sets of arbitrary constants. 
One of these is a4,.+, ( r  = 0,1,2,  ...). If the wall temperature is prescribed the 
other is B4,.+1 (r = 1,2, ...), while if the heat transfer from the wall is zero the 
other is 8, (n = 0,1 ,2 ,  ...). 

5. Generalization of the theory 
For a real fluid, the appropriate equations for a compressible boundary layer 

are 
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where u, v are the components of velocity along and perpendicular to the wall, 
5, y denote distances measured along and perpendicular to the wall, P is the 
pressure in the main stream just outside the boundary layer, p is the density, 
,u is the viscosity, T is the temperature, c is the Prandtl number and cp the specific 
heat of the gas at constant pressure. The correspondence between (5.1) to (5.3) 
and (2.1), (2.2) may be found in Stewartson (1949). The boundary conditions are 
of the same form as those given earlier, viz. u, T tend to prescribed values as 
y -+ 00 (corresponding to (2.3)), u = v = 0 at y = 0 (corresponding to (2.4)), 
and T has a prescribed behaviour at y = 0 (corresponding to (2.3), (2.6)). 

In  considering the form of the solution near a point of zero skin-friction, the 
crux of the matter is whether the leading term in the temperkture is or is not a 
constant. This question occurred in the discussion of the model fluid and of 
equations (2.18) with solution (2.19). A similar set of equations is obtained from 
(5.1) to (5 .3) ,  but of a slightly more complex nature because ,u is a function of 
temperature. It turns out that, for exactly the same reason as before, the solu- 
tion of this pair contradicts the assumptions on which the theory is built, namely 
that the stress first vanishes a t  the wall and that the singularity is centred at the 
point of zero skin-friction. We shall not give the argument here, for although 
straightforward i t  is complicated. The essential point is that so far as the 
leading term is concerned (u/c,) dP/dx  and (,u/c,) ( a ~ / a y ) ~  may be neglected in 
(5.2) whence it takes on the same form as (2.2). Accordingly, the corresponding 
equation to that for go in (2.18) is similar and has the same properties. 

Once we have established that the leading term in the temperature is constant 
for both the model and the real fluids we can see that two of the complications 
introduced by the real fluid are perturbations and hence do not affect the 
character of the solutions obtained earlier. Thus the variation of viscosity with 
temperature is a perturbation and, so long as the solution is regular, will only 
make regular contributions to the successive equations. The critical integrals 
which must vanish if the singular solution is to be acceptable are therefore still 
dependent only on anB1, using the notation of the previous sections, and in 
fact as before will be non-zero so that the solution must be regular. Again, the 
dissipation term in (5.2) may be removed by means of a particular integral if 
c = 1, but in any case it is easily seen to be of the order of g*T, so that its effect 
is noticed for the first time in the equation for g4(y) only. For the same reason 
as for ,u, this means that it will have no effect on the critical integrals. 

There remains only the effect of Prandtl number c. So far as the critical 
features of the solution are concerned, its effect is strictly equivalent to replacing 
vo by vo /c  in (2.2) while leaving (2.1) alone. Accordingly, the main change in the 
equations of the expansion is to replace g;(y) at each stage by g;/a. Thus the 
equation for g2 changes from (2.23) to 

c-'& - 4y39;1 + 7'92 = 2a1B1q2, (5.4) 

so that its solution also involves c. The critical integral associated with g2, and 
in the same way with all other g, (n + 4r+4), will therefore also contain CT, 

which makes for greater complication. It has unfortunately not been possible 
to prove much about the effect of c on the critical integrals, but from an ex- 
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amination of a few special cases there is no indication that the integrals vanish 
for any cr. 

Finally, it is noted that the effect of suction or injection may be taken into 
account. Just  as Terrill (1960) found in the incompressible boundary layer, its 
effect is of degree rather than character and it does not affect the nature of the 
singularity. 

We conclude therefore that for a general compressible boundary layer of a 
real fluid the flow in the neighbourhood of the point of zero skin-friction is only 
singular if the heat transfer at the wall vanishes there. It is noted that an attempt 
was made to see if a singularity could occur at the wall at a point where the skin 
friction is not zero using Goldstein's method (1930),  but the conclusion was that 
it could not. Since the difficulty in the numerical integration mentioned by Curle 
(1968) clearly indicates a singularity somewhere, we must conclude that it is 
centred in the interior of the fluid; the behaviour of the solution near such a 
singularity is, however, beyond the scope of this paper. 

Appendix A 
The homogeneous differential equation satisfied by the temperature function 

g, of $ 2  is 

This equation may be solved by the methods of contour integration by writing 

g, = S, e-*.r*Xp(x) dx,  

from which it may be shown that 

(A. 2) 

the basic contours starting at  x = - 1, ending at x = 00 ~f: Oi and passing either 
above or below the singularity at x = 0. It is clear from (A. 2) that gn is a poly- 
nomial only if n = 4r or 4r + 1 (r = 0, 1,2, ...). If n = 4r the polynomial solution 
is non-zero at 71 = 0 but its derivative is zero at 7 = 0, whereas the reverse is 
true if n = 4r+ 1. Of particular importance is that solution Gn(y), if it  exists, 
such that C,(O) = 1 and G, is algebraic a t  infinity. This is given by 

where the symbol 9 is used to denote the finite part of the infinite integral and 

If n = 4r, (A. 3) is not directly of use since A ,  = 0, but then the polynomial 
solution can easily be obtained from (A. 2). 
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Appendix B 
On writing 

f 3  = +2&y3- 2 ~ 2 4 3 ( 7 ) ,  

F " - l  2 7  3F"+? 27 2F"-6gyF = G3(7). 

equation (3.5) reduces to  

(Be 1) 

The boundary conditions are F(0)  = F'(0) = 0, and we wish to show that P 
must be exponential a t  infinity. One complementary function of (B. 1) is y2, 
and if that one of the other two which is algebraic at infinity is denoted by L(7), 
it  follows from the known properties of (B. 1) (Terrill 1960, p. 62)  that 

Further, on solving (B. 1) by the method of variation of parameters, it follows 
that F is exponential at infinity if 

s," e-474 ( 7 2 ~ '  - 2 7 ~ )  ~ ~ ( 7 )  d7 + 0. (B. 3) 

Suppose now that L contains a term 7". Its contribution to the integral in (B. 3) is 

= (S  -- 2 )  A ,  Sks(& - i)! (is - t)! ( - i)! [24(3  - l)!]-',  

(B. 4) 

using (A. 3). Hence, substituting (B. 2 )  into (B. 3) and using (B. 4), we find that 
the integral in (B. 3) is equal to 

I nL=O ( ( m + i ) !  (m-$) !  ( m - l ) ! m !  

(m-Q) !  (m-a) !  .- - (m-$ ) !  ( m - i ) !  
24A3(-$)! I: ~ 

The second series can be evaluated from the theory of hypergeometric series 
and is equal to - $. The first series has been summed numerically and is not equal 
to - $, thus showing that f3 is exponentially large at infinity unless a2 = 0. 
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